Показать сообщение отдельно
Старый 30.03.2023, 02:38   #82
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 244
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.

Стимуляция рецепторов факторов роста в клеточной мембране запускает 2 основных сигнальных пути, разных, но связанных между собой: сигнал фосфоинозитид-3-киназы(PI3K) активирует белок AKT, следовательно, его субстраты, и каскад MAPK/ERK. Оба этих пути управляют пролиферацией, выживанием и диссеминацией клеток. Каскад PI3K/AKT также поддерживает анаболизм, тогда как MAPK/ERK более активен в пролиферации и инвазии. Усиление сигналинга MAPK/ERK – результат гиперэкспрессии или неправильной активации рецепторов тирозинкиназ (RTK) или их прямых мишеней (PI3K, SRC и RAS). Нормальная работа MAPK/ERK также отвечает за подавление онкогенеза путём запуска механизмов старения и убиквитинизации. Старение включает в себя подавление пролиферации клеток с помощью терминального ареста клеточного цикла.

Генетические мутации могут разбалансировать активность киназ и гиперактивировать каскад MAPK во время запуска и развития онкогенеза. Онкогенных драйверных мутаций в MAPK/ERK установлено довольно много, и они различны для разных типов опухолей. Это могут быть и мутации 21 экзона в EGFR, и мутации KRAS, и классическая мутация V600EBRAF. В общем и целом мутации, затрагивающие MAPK/ERK, — события одиночные и независимые. Так, две трети карцином щитовидной железы несут активирующие мутации или в гене рецепторной тирозинкиназы RET, или KRAS, или BRAF1. И только в очень небольшом проценте опухолей были обнаружены мутации в двух различных генах сигнального пути.

Ингибиторы RAF могут запустить ненормальную пролиферацию клеток кожи и привести к возникновению кератоакантом или плоскоклеточного рака кожи приблизительно у 10-20% пациентов. Виной этому является парадоксальная активация каскада MAPK/ERK в нормальных кератиноцитах. Комбинация ингибиторов BRAF и MEK при метастатической меланоме повысила безопасность лечения, сбалансировав активацию нормального MAPK/ERK, и значительно снизила частоту парадоксальных онкогенных изменений кожи. В целом использовать генные мишени в своих целях следует с учётом уникальных черт, присущих человеческим опухолям.

Белки Ras закреплены на клеточной мембране с внутренней стороны посредством жирной кислоты, ковалентно связанной с карбокситерминальным концом белка, и это семейство белков можно сравнить с молекулярным переключателем МАРК. Обмен ГДФ на ГТФ и сопряжённый с этим переход неактивной формы Ras в активную катализируется SOS (SOS1, SOS2) — ферментом, относящимся к группе факторов обмена GEF (Guanine Exchange Factors).
Активная форма Ras может проявлять собственную невысокую ГТФ-азную активность и гидролизовать связанный ГТФ до ГДФ, тем самым самоинактивируясь. Этот процесс довольно длителен, хотя и облегчает обмен на GTP, который присутствует в гораздо более высоких концентрациях в цитозоле, но он многократно ускоряется ГТФ-аза-активирующими белками (GAP), например, p120GAP (p120 GTPase activating Protein) и нейрофибромином (NF1GAP). Мутации в генах онкопротеинов Ras ведут к предотвращению реакции гидролиза, вследствие чего сигнальный путь длительное время остаётся активным.

Наряду с Ras существуют и другие ГТФ-связывающие белки, которые с помощью подобных биохимических механизмов активируются или инактивируются и имеют различные задачи. Малые ГТФазы имеют примерно половину размера α-субъединицы гетеротримерных G-белков и среди них хотелось бы упомянуть семейство Rho, представители которого играют ключевую регуляторную роль в сигнальной передаче от цитокиновых рецепторов, а также в организации актинового цитоскелета клетки и микротрубочек. Rho GTPases составляют подсемейство малых GTPases, которое также включает подсемейства Ras, Ran, Rab и Sar1/Arf. Rho GTPases контролируют множество клеточных функций посредством регуляции сократительной способности актина и периферических актиновых структур, включая морфологию клеток, локомоцию и полярность.
Активные Rho ГТФ-азы располагаются на клеточной мембране, где, связывая специфические эффекторные белки, они обеспечивают последующую трансдукцию сигнала, вызывая перестройку цитоскелета. Находясь в неактивной конформации, Rho GTPases связываются с ингибиторами диссоциации гуаниновых нуклеотидов (GDI), что способствует их стабилизации и предотвращает их активацию.

Семейство малых G-белков Rho (~21 кДа) включает 20 членов, классифицированных как Rac (Rac1, Rac2, Rac3 и RhoG), Rho (RhoA, RhoB и RhoC) и Cdc42 (Cdc42, TC10, Chip, TCL, и Wrch-1) и другие менее изученные ГТФазы, включающие RhoD, RhoE и RhoH. Rho благоприятствует ранним стадиям онкогенеза, однако RhoB может ограничивать развитие высокоагрессивных опухолей; потеря RhoA скорее ускоряет образование аденом легких.

Rac участвуют в образовании активных форм кислорода (АФК) посредством активации никотинамидадениндинуклеотидфосфатных (НАДФН) оксидаз NOX1 и NOX2. Rho регулирует образование стрессовых волокон и сокращение клеток, тогда как Rac и Cdc42 регулируют образование ламеллоподий и филоподий соответственно, и стимулируют протрузивную деятельность (динамические события в передней части движущихся клеток, обеспечивающие их продвижение).
Убиквитинирование лигазами FBXL19 и HACE1 E3 влияет на уровни экспрессии Rac. В соответствии с ролью Rac в контроле комплексов НАДФН-оксидазы, дефицит супрессора опухоли HACE1 увеличивает выработку активных форм кислорода (АФК), что, в свою очередь, приводит к зависимости от Gln, основного источника питательных веществ для опухолевых клеток. Более того, подавление HACE1 взаимодействует со сверхэкспрессией ErbB2/HER2 в клетках молочной железы, вызывая гиперактивацию Rac1, миграцию, злокачественную трансформацию и онкогенез in vivo.

Семейство Pak расположенно ниже как Rac, так и Cdc42 и являются критическими эффекторами, которые связывают семейство Rho GTPases (Rho GTPases) с реорганизацией цитоскелета и ядерной передачей сигналов. p21-активируемые киназы (PAK) представляют собой Ser/Thr киназы, которые на основании их структурных и функциональных особенностей подразделяются на две группы: группу I (PAK1–3) и группу II (PAK4–6). PAK группы I имеют аутоингибирующий домен (также называемый ингибирующим доменом-переключателем) и киназный домен (каталитический домен, CD) и активируются за счет связывания активных (то есть связанных с GTP) форм Rho GTPases, таких как как Cdc42 и Rac1. PAK группы II не имеют автоингибирующих доменов и не активируются активными Rho GTPases.

Тот факт, что на сегодняшний день идентифицировано около 80-ти типов GEF и 70-ти — GAP, что количественно превосходит Rho ГТФ-азы, коих имеется около 20-ти, может говорить о необходимости строгого контроля регуляции локальной активности Rho, чтобы предотвратить ошибочную передачу исходного сигнала. В опухолевых клетках активность Rho ГТФ-аз ненормально высока, что может быть обусловлено изменённой генной экспрессией или нарушенной функцией регуляторов, в меньшей степени — активирующими мутациями в самих Rho ГТФ-азах.

Множественность клеточных исходов, регулируемых более чем 70 идентифицированными Rho GEF, диктуется их дифференциальным паттерном экспрессии и селективностью в отношении белков Rho, а также сложными механизмами, регулирующими их активацию. Среди многих GEF семейства Rho, регулирующих активность Rac и участвующих в прогрессировании рака, члены семейства Ect2, Tiam1, P-Rex и Vav являются наиболее заметными, связанными с онкогенезом и метастазированием. Например, избыточная экспрессия Vav3 при раке яичников связана с плохим прогнозом и придает резистентность к установленным терапевтическим режимам.
P-Rex1 демонстрирует значительную базальную ассоциацию с плазматической мембраной; сходным образом значительное количество PI 3-kinase-γ связано с мембраной даже в отсутствие стимуляции. Эта базовая ассоциация PI 3-киназы- γ и P-Rex1 с плазматической мембраной может быть необходима для чрезвычайно быстрой активации Rac. Кстати, эти молекулы могут быть аллостерически активированы с помощью скаффолдов.
Повышенный ядерный Rac1 в опухолевых клетках может быть результатом дисбаланса в ядерно-цитоплазматическом перемещении этого белка, вызывающего снижение активного цитоплазматического Rac1 и сопутствующее повышение активного RhoA, что способствует сократимости актомиозина, необходимой для клеточной инвазии.

Среди RhoGAP-белков особенно выделяют семейство DLC-белков (deleted in liver cancer), поскольку именно их инактивация является наиболее частым изменением Rho-регуляторов при развитии опухолевых процессов. При некоторых типах рака утрата DLC1 встречается настолько же часто, как и выпадение опухолевого супрессора р53; так, белок DLC1 отсутствует в клетках различных опухолевых образований (молочной железы, кишечника, лёгких, простаты) по причине инактивации соответствующего ему гена. «Выключение» DLC1 вызывает усиленное образование т.н. активных стрессовых волокон и сопряжено также с повышенной миграционной активностью раковых клеток.
Вообще в геноме человека закодированы три изоформы DLC, имеющие цифровое обозначение от 1 до 3. DLC1-3 обладают схожей структурной организацией и регулируют активность малых ГТФ-аз RhoА и Cdc42. DLC3, например, контролирует передачу сигналов от рецептора фактора роста EGFR и выполняет функцию стабилизации в постоянных клеточных контактах. Утрата функции DLC3 в опухолевых клетках может, с одной стороны, привести к yсилению сигналов в клетку от рецепторов ростовых факторов и, с другой стороны, стать причиной ослабления контактов между структурами эпителиальных тканей, что способствует как возникновению опухоли, так и её метастазированию.

Последний раз редактировалось albert52; 30.03.2023 в 02:47..
albert52 вне форума   Ответить с цитированием