Показать сообщение отдельно
Старый 13.04.2023, 04:20   #87
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 246
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Продолжим.

В суперсемейство Ras входит более ста белков. На основе структуры, последовательности и функции надсемейство Ras делится на девять основных семейств: Ras, Rho, Rab, Rap, Arf, Ran, Rheb, Rad и Rit, каждое из которых далее делится на подсемейства. Каждое семейство имеет общий основной G-домен, который обеспечивает необходимую активность GTPase и обмена нуклеотидами. Грубо говоря, семейство Ras отвечает за пролиферацию клеток, Rap за клеточную адгезию, Rho за динамику цитоскелета и клеточную морфологию, Ran за ядерный транспорт, Rab и Arf за везикулярный транспорт и Rheb за передачу сигналов mTOR.

Члены суперсемейства Ras оказались критически важными игроками во множестве фундаментальных клеточных процессов, на которые они влияют путем модуляции их связывания GTP и цикла гидролиза. Обычно обнаруживается, что эти небольшие ГТФазы циклически переключаются между двумя пулами, мембранно-ассоциированным и цитозольным пулом. При этом прикрепление к мембране является предпосылкой для сигнальных ролей этих белков, поэтому обратимая мембранная транслокация предоставляет клеткам средства для регуляции места события активации.
Однако такой физический цикл имеет серьезные недостатки для небольших ГТФаз подсемейств Rho и Rab. В отличие от умеренной гидрофобности других членов суперсемейства Ras, модифицированных липидами, сильно гидрофобные геранилгеранильные фрагменты белков Rho и Rab делают их энергетически невыгодными для распределения в цитозоле в виде отдельных мономеров.

Посттрансляционно модифицированные белки Rho и Rab могут отделяться от мембран только в том случае, если им помогает «шаперон», который защищает объемные липидные фрагменты от водной среды цитозоля. Для белков Rho и Rab роль шаперона играют белки ингибиторы диссоциации гуаниновых нуклеотидов (GDI), Rho-GDI и Rab-GDI соответственно; димерные комплексы GDI/GTPase представляют собой цитозольный резервуар GTPase. Чтобы клетка использовала этот резервуар, сначала надо заставить GDI высвободить свою GTPase и факторы, которые способствуют замещению GDI и помогают рекрутировать GTPases на мембраны, имеют огромное значение, потому что они будут определять, где и когда активируются Rho и Rab GTPases.

Выявлены мембраносвязанные биохимические активности, опосредующие рекрутирование мембранных Rab-белков; ответственный объект был назван «GDF» для фактора смещения GDI. Так, Rab-взаимодействующий мембранный белок Yip3/Pra1 обладает активностью GDF для Rab9. При этом для Yip3/Pra1 было идентифицировано множество партнеров по связыванию; так рецептор нейротрофина регулирует RhoA, действуя как GDF.
Каждый GDI связывается с высокой аффинностью только с модифицированной липидами формой своего партнера, при этом каждый GDI представляет собой плейотропный фактор, способный взаимодействовать со многими различными членами одного и того же подсемейства. Т.о. один ген кодирует функцию Rab-GDI для каждого белка Rab, и аналогичным образом один ген обеспечивает функцию Rho-GDI для всех белков Rho.

Большинство белков семейства Rho циклически перемещаются между цитозолем и мембраной. Мембранная ассоциация опосредована встраиванием изопренильной части, расположенной на их С-конце, в липидный бислой. Перенос изопреноидного фрагмента из липидного бислоя в связывающий карман внутри RhoGDI непосредственно приводит к диссоциации белков Rho из мембраны с образованием растворимых частиц. Отметим, что RhoGDI преимущественно взаимодействуют со связанными с GDP формами цитозольных белков Rho, предотвращая спонтанное катализируемое GEF высвобождение нуклеотида GDP, тем самым поддерживая GTPases в неактивном состоянии. Кроме того, RhoGDI контролируют мембранную ассоциацию малых ГТФаз.

Также было выявлено несколько шаперонов Ras и Rap. Основные функции этих шаперонов заключаются в доставке фарнезилированных и геранилгеранилированных белков к мембранам и их извлечении из тех же компартментов. Изопренильные группы таких белков облегчают присоединение молекул к клеточным мембранам - это так наз.«липидные якорные белки». Впрочем одного только фарнезилирования или геранилгеранилирования недостаточно для нацеливания белков Ras или Rap на PM. Требуется второй механизм, включающий участок положительно заряженных основных аминокислот, PBR, который взаимодействует с отрицательно заряженными фосфолипидами PM. Кстати, изоформы Ras, особенно повсеместно экспрессируемые H, N и KRas (4A и 4B), в высокой степени гомологичны по своим последовательностям эффекторного G-домена, но существенно различаются по своим C-концевым 23–24 аминокислотам или так называемым HVR, включающий линкер плюс мембранный якорь с изопренильной группой.

~ 40% всех белков Ras существуют в виде мультимеров, каждый из которых состоит из 5–8 молекул Ras, и мультимеры Ras пространственно разделены в зависимости от изоформы и связанного нуклеотида. 10-20% молекул Ras присутствуют в димерах при экспрессии на уровне, близком к базовому, а фракция мультимеров более высокого порядка становится очевидной только при более высоких уровнях экспрессии .

Идентифицированные шапероны включают галектин-1, галектин-3, цГМФ- специфическая 6-дельта-субъединица фосфодиэстеразы (PDE6d) и малые GDS (SmgGDS). В то время как некоторые шапероны специфичны к одной ГТФазе (галектин-1 и галектин-3 являются специфическими шаперонами для H-Ras и K-Ras соответственно; PDE6d и SmgGDS способны связывать фарнезилированные Ras и геранилгеранилированные белки Rap, правда с разным сродством. Преимущественно связываясь с одной из GTPases, эти шапероны могут способствовать отличительной локализации Ras и Rap и, таким образом, регулировать сродство к сходным эффекторам.

PDE6d принадлежит к большому и разнообразному суперсемейству циклических нуклеотидов PDE (PDE1-11), основной функцией которого является регулирование клеточных концентраций цАМФ и цГМФ и создание сигнальных комплексов с регуляторными и каркасными белками. Отметим, что взаимодействие между GTPases и PDE6d регулируется PBR (см. выше); сходным образом, PBR также влияет на способность SmgGDS взаимодействовать с субстратами. Так, ассоциации SmgGDS с GTPases, лишенными PBR, ограничиваются неактивной формой GDP. Белок SmgGDS обладает необычно широкой субстратной специфичностью и он может стимулировать нуклеотидный обмен от нескольких малых GTPases, включая Rap1a, Rap1b, RhoA, K-Ras, Rac1 и Cdc42; различные варианты сплайсинга SmgGDS помогают вновь синтезированным малым GTPases достигать PM.

Фарнезилтиосалициловая кислота (FTS) — нетоксичный препарат, который изначально был разработан для воздействия на онкогенный и патологически активированный Ras; он препятствует связыванию активированных белков Ras с сопровождающими шаперонами и с PM. Несмотря на предпочтение формы, связанной с GTP, FTS не обладает специфичностью к отдельным малым GTPases. В дополнение к противораковым эффектам FTS продемонстрировал мощные противовоспалительные свойства на моделях аутоиммунных заболеваний, включая красную волчанку, аутоиммунный энцефалит, ревматоидный артрит и диабет I типа.

Белки 14-3-3 связываются с Raf-1 и подавляют его ферментативную активность, удерживая неактивную форму от БМ. Киназа Raf-1 может быть реактивирована путем вытеснения себя из белков 14-3-3 путем дефосфорилирования и связывания либо с белками Ras, либо с белками Rap. Таким образом, белки 14-3-3 регулируют функцию Ras и Rap, действуя как шапероны для Raf-1 и контролируя его ассоциацию с PМ; их можно рассматривать как малые скаффолды, впрочем как и Yip3/Pra1 (см. выше).
Название 14-3-3 относится к определенному характеру миграции этих белков при хроматографии на ДЭАЭ-целлюлозе и электрофорезе в крахмальном геле. Белки 14-3-3 играют критическую роль в специфических клеточных путях, включая клеточный цикл, экспрессию генов и апоптоз; более 200 связывающих белков взаимодействуют с ними.

Последний раз редактировалось albert52; 13.04.2023 в 04:27..
albert52 вне форума   Ответить с цитированием