Показать сообщение отдельно
Старый 17.03.2023, 14:13   #79
albert52
Местный
 
Регистрация: 12.03.2018
Сообщений: 246
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
По умолчанию

Вставка

Стрессовые гранулы

Стрессовые гранулы (SG) представляют собой разделенные по фазам биомолекулярные конденсаты РНК-связывающих белков (RBP) и мРНК, которые образуют жидкие каплеобразные безмембранные цитоплазматические компартменты в ответ на стресс. Основная функция SG заключается в том, чтобы способствовать выживанию клеток в условиях стресса, обеспечивая временный резервуар для хранения остановившихся в трансляции мРНК, RBP и рибосомных белков. Эукариотические клетки отключают некоторые клеточные трансляции в ответ на стрессы в окружающей среде (обычные стрессы в окружающей среде - гиперосмолярность, тепло и окислительные условия), чтобы сэкономить энергию и ответить на повреждение, вызванное стрессом.
Домен низкой сложности, содержащийся во многих RBP, связанных с SG, имеет тенденцию быть внутренне неупорядоченным и служит движущей силой для разделения липид-липидной фазы (LLPS), которое инициирует сборку SG.

В нормальных клетках после снятия стресса динамические SG быстро разбираются молекулярными шаперонами, UPS и VCP (UPS, убиквитин-протеасомная система; VCP, валозинсодержащий белок), тогда как аберрантные SG и твердые белковые агрегаты очищаются путем аутофагии. Дело в том, что при болезненных состояниях может происходить аберрантная сборка SG и/или фазовый переход из жидкости в твердую, вызывая образование твердых белковых агрегатов, которые считаются патогенными . Показано, что вызывающие заболевание мутации в генах, кодирующих SG-ассоциированные RBP, изменяют свойства белков, делая их менее растворимыми и склонными к агрегации. Кроме того, неправильное сворачивание белков увеличивается при клеточном стрессе и нарушении протеостаза. Неправильно свернутые белки, по-видимому, накапливаются в SG, что приводит к тому, что последние теряют жидкоподобную динамику и образуют агрегацию белков.

Белковый гомеостаз (протеостаз) относится к сбалансированному состоянию, в котором белки поддерживаются в правильной конформации, концентрации и внутриклеточном расположении, чтобы они могли выполнять свои клеточные функции для поддержания целостности и функциональности клетки. Для регуляции протеостаза в клетках развилась сложная система, которая контролирует весь жизненный цикл белков от синтеза до утилизации. Система регуляции протеостаза включает множество компонентов, в том числе механизм трансляции, молекулярные шапероны и ко-шапероны, убиквитин-протеасомную систему (UPS) и путь аутофагии.

Молекулярные шапероны представляют собой класс белков, которые способствуют сворачиванию и повторной укладке белков, а также сборке белковых комплексов. Белки теплового шока (Hsps), вероятно, являются наиболее широко изученными шаперонами, которые делятся на подсемейства в зависимости от их молекулярной массы, включая Hsp90, Hsp70, Hsp40 и малые Hsps. Hsps играют жизненно важную роль в рефолдинге, деградации и секвестрации неправильно свернутых белков либо АТФаз-зависимым, либо АТФаз-независимым образом, а также регулируют разборку и клиренс SG.

Убиквитинирование белков, по-видимому, является молекулярным сигналом, используемым как для деградации белков с неправильной укладкой, так и для оборота аберрантных SG. VCP извлекает РНК-связывающий белок G3BP1 из SG и запускает разборку SG; G3BP является ядром сети взаимодействия в SG. При тепловом шоке G3BP1 в SG подвергается массовому убиквитинированию; белок, ассоциированный с ER, FAF2 распознает убиквитинированный G3BP1 и доставляет его в VCP. «Извлечение» G3BP1 из SG с помощью VCP запускает диссоциацию других белков SG, что приводит к разборке SG.

У млекопитающих семейство белков G3BP состоит из трех гомологичных белков; G3BP1 (основной вариант), G3BP2a и его вариант сплайсинга G3BP2b; общая структура белка создает трехмерную платформу, которая связывает РНК. Отметим, что статус фосфорилирования G3BP1 может функционировать как переключатель роста клеток, где фосфорилированный G3BP1 путем связывания с 3'-UTR опосредует деградацию мРНК белков роста, и, таким образом, уменьшает клеточную пролиферацию. В целом статус фосфорилирования G3BP может влиять на судьбу мРНК, защищая их от деградации во время клеточного стресса, доставляя в SG. Кстати в пролиферирующих клетках G3BP1 гипофосфорилируется, теряя способность расщеплять мРНК.
3'-нетранслируемые области ( 3'-UTR ) матричных РНК (мРНК) регулируют процессы, основанные на мРНК, такие как локализация и стабильность мРНК, и трансляция. Именно к ним присоединяются RBP (см. выше), определяя посттрансляционные модификации. В целом 3'-UTR действуют как каркасы для регуляции локализации мембранных белков.

Хотя G3BP экспрессируются во всех нормальных клетках, некоторая специфическая экспрессия изоформ в тканях была идентифицирована для G3BP1 в легких и почках, для G3BP2a в мозге и для G3BP2b в тонкой кишке. G3BPs представляют собой главным образом цитоплазматические белки, но различие в распределении было зарегистрировано для различных изоформ: G3BP1 может локализоваться в ядрах в покоящихся клетках, наиболее вероятно из-за фосфорилирования в Ser149.

Раковые клетки требуют экспресии G3BPs, которые служат вспомогательными генами, способствующими их выживанию . Отметим, что G3BP являются важными составляющими вирусных фракций CHIKV и HCV, облегчая репликацию и сборку вирусов. Кстати, PTEN может модулировать уровни экспрессии нескольких белков, негативно регулируя уровни экспрессии белка G3BP1 и AKAP121.

Сверхэкспрессия G3BP1 опосредует EMT в клетках рака молочной железы через сигнальный путь Smad; нокдаун G3BP1 блокировал мезенхимный фенотип клеток. G3BP2 играет роль в инициации рака молочной железы путем стабилизации транскриптов мРНК онкогена SART3(Squamous cell carcinoma antigen recognized by T-cells 3), отвечающего за экспрессию плюрипотентных факторов транскрипции Oct-4 и Nanog. G3BP2 может служить позитивным регулятором инициации рака молочной железы, а также негативным регулятором метастазирования рака, так как G3BP2 нужен для приобретения свойств, инициирующих рак, а при метастатической колонизации раковые клетки должны потерять свой EMT-фенотип.
Кроме того, G3BP1 сверхэкспрессируется при гепатоцеллюлярной карциноме (HCC) и участвует в EMT из HCC, стимулируя экспрессию Slug, члена семейства транскрипционных факторов цинкового пальца SNAIL, которые индуцируют EMT. При раке поджелудочной железы межклеточное вещество уплотняется (жесткая матрица), TWIST1 отсоединяется от G3BP2 и движется к ядру, что приводит к индукции EMT.

Последний раз редактировалось albert52; 17.03.2023 в 14:20..
albert52 вне форума   Ответить с цитированием