![]() |
|
|
|
|
#1 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Среди онкологов сейчас модна теория опухолевых стволовых клеток (ОСК). Она опирается на 2 факта:
во-первых, клетки большинства органов живут меньше, чем требуется для развития полноценной опухоли. Так твердо установлено пожизненное существование только для нервных клеток и предполагается для клеток миокарда. Клетки скелетных мышц, а также глубокого слоя эпителия желудка и эпителия крипт толстой кишки живут до 15 лет, клетки долек печени - от 300 до 500 дней, костей - до 10 лет, эпидермис кожи - 2 недели. Правда, как предупреждает профессор Гладышев, не стоит обольщаться, что ваша печень полностью обновляется каждый год, а вся кожа легко меняется раз в месяц. — Часто все упрощают, но в жизни многое происходит по-другому: скажем, некоторые клетки биологически способны обновляться, но по факту такая клетка живет в своем органе и, если убрать ее, то заместится другой клеткой хоть в течение дня, а если не трогать — может сидеть 10 лет и не меняться. Еще бывает, что один и тот же тип клеток в одном месте организма за какое-то время полностью поменялся, а в другом месте живет как ни в чем не бывало. Какие факторы на это влияют, пока во многом остается загадкой внутренней саморегуляции организма. Как бы это ни было, но стволовые клетки существуют не только в костном мозге, где их впервые обнаружили, но и во внутренних органах. А если есть стволовые клетки, то есть и ниши, в которых они существуют. Специальные клетки ниш следят за их состоянием и при необходимости стимулируют их размножение, причем одна из образующихся клеток остается в нише, а другая выходит наружу и продолжает размножаться дальше. во-вторых, было установлено, что как в доброкачественных, так и в злокачественных опухолях, например, при лейкозах, раке молочной и предстательной железы, интенсивно размножается только небольшая часть опухолевых клеток, которые имеют маркеры стволовых клеток. Впрочем, в злокачественных опухолях размножающихся клеток намного больше, и даже неразмножающиеся условно дифференцированные клетки сохраняют отчетливый атипизм и могут снова дедифференцироваться. Мой комментарий: срок жизни нормальных клеток не имеет такого большого значения (если они живут, конечно, больше месяца), так как как только клетки опухоли начинают размножаться, то у них начинается свой отчет времени. А как я уже указывал, для нарушения клеточного цикла бывает достаточно мутации одного или двух протоонкогенов, это тебе не метаболические протоонкогены. А когда клетки выходят из стволовой ниши, то риск мутаций для них резко повышается. Впрочем, сепаратизм генов может развиться и у стволовых клеток, эту возможность я тоже не исключаю. Кстати, установлен интересный факт: опухолевые клетки на ранних стадиях рака часто имеют больше генных мутаций, чем на более поздних стадиях. Я полагаю, что есть мутации, более сильно сдвигающие равновесие между генами инфраструктуры и надстройки, то есть влияющие на раковую прогрессию, в результате чего клетки с такими мутациями быстрее размножаются и вытесняют другие опухолевые клетки. Так возникают многократно описанные клоны опухолевых клеток. Вообще, раковые клетки имеют много общего с эмбриональными стволовыми клетками (ESC). Согласно теории ОСК, основная масса опухоли состоит из множества гетерогенных дифференцированных раковых клеток, подпитываемых редкой популяцией ОСК (от 1% до 10%), характеризующихся способностью к самообновлению и дифференцировке. Основная регуляторная сеть для поддержания и самообновления эмбриональных стволовых клеток OCT4, SOX2, KLF4, NANOG и SALL4 аномально экспрессируются в образцах опухолей человека, что свидетельствует о наличии раковых стволовых клеток. Например, агрессивный рак и ESC имеют общую сигнатуру экспрессии генов, которая включает сотни генов. Поскольку гены ESC не присутствуют в большинстве тканей взрослого человека, они могут быть идеальными кандидатами-мишенями для диагностики и лечения рака. Так, SALL4, член семейства spalt-подобных (SALL) генов (от SALL1 до SALL4) играет важную роль в поддержании плюрипотентных и самообновляющихся свойств эмбриональных стволовых клеток (ESC). После рождения экспрессия SALL4 подавляется и отсутствует в большинстве тканей взрослого человека. Однако SALL4 повторно экспрессируется при различных формах рака. |
|
|
|
|
|
#2 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Подавляющее большинство эпителиальных опухолей (раков) различной органной локализации (легкие, предстательная железа, молочная железа) ограничиваются поражениями in situ, которые могут оставаться недиагностированными в течение жизни человека. Это соответствует моей концепции двухэтапного канцерогенеза (см. выше). Большинство генетических изменений, обнаруживаемых в инвазивных и метастатических опухолях, уже присутствуют в фенотипически еще неизмененных клетках, а также клетках с фенотипом предопухолевых изменений (очаговая гиперплазия, мета- и дисплазия) задолго до развития рака. Ткань с накопленными генетическими и эпигенетическими изменениями определяют как поле канцеризации, или опухолевое поле.
Многоступенчатая геномная модель канцерогенеза начинается с приобретения клеткой одной или нескольких геномных или эпигеномных аберраций, обеспечивающих ее пролиферативное превосходство (см. выше). Затем формируется клональное поле подобных клеток, еще сохраняющих нормальный фенотип и не нарушающих гистоархитектоники ткани. Трансформация нормальных клеток в опухолевые посредством этих механизмов не обязательно означает развитие рака, так как пролиферация опухолевой клетки может быть прервана апоптозом (если его механизмы не повреждены) и тесно связана с работой гена р53. С накоплением генетических изменений, способствующих увеличению пролиферативного потенциала, и нарастанием фенотипических различий между клональными популяциями одна или несколько клеток приобретают признаки злокачественной трансформации – способность к эпителиально-мезенхимальному переходу, инвазии и метастазированию. Модель предполагает, что клетки, претерпевшие ранние, но не все необходимые для опухолевой трансформации генетические изменения, и составляют поле канцеризации. Примером опухолевого поля являются предопухолевые заболевания, характеризующиеся повышенным риском развития рака, в частности пищевод Барретта (см. ниже). Среди важнейших факторов формирования опухолевого поля выделяют старение, действие химических, физических мутагенов и хронического воспаления, а среди механизмов формирования поля большое значение имеют метилирование ДНК и дисрегуляция микроРНК. Изменения в стромальном компартменте ткани (экстрацеллюлярном матриксе, клетках соединительной ткани) могут играть ведущую роль в инициации опухолевого процесса, что определяется появлением особого опухоль-ассоциированного фенотипа фибробластов и макрофагов, а также изменением иммунного статуса ткани. По мнению одних авторов, поле канцеризации ассоциируется с генетическими и эпигенетическими повреждениями эпителия, граничащего с зоной опухолевого роста, в представлении других оно связано с меняющимся характером экспрессии различных сигнальных молекул (протеаз и их ингибиторов, воспалительных медиаторов и хемокинов), зависящим, в свою очередь, от присутствующей линии фибробластов, макрофагов и накапливаемых в ткани Tregs-лимфоцитов, а также от особенностей локального метаболического (в частности при ожирении и сахарном диабете) и гормонального статуса ткани. В полях канцеризации регистрируются множественные генетические, эпигенетические и хромосомные изменения, происходящие в гистологически неизмененном эпителии. Повышенное метилирование ДНК в промоторной области генов-онкосупрессоров аналогично механизму делеции хромосомных фрагментов и может способствовать последующему развитию опухоли. Эпигенетически могут быть подавлены и гены, участвующие в репарации повреждений ДНК. Признаком полевой канцеризации являются также мутации митохондриальной ДНК, которые обнаруживаются не только в соседствующем с опухолью эпителии, но еще чаще – в клетках стромы. Так как эпигенетическое подавление генов и митохондриальная дисфункция являются признаками старения, они, вероятно, документируют важную связь между возрастным увеличением риска развития рака и событиями полевой канцеризации. Обнаружено и повышенное метилирование микроРНК с предполагаемой онкосупрессивной функцией, в частности в полях рака желудка. Гистологически в качестве первых признаков формирования опухолевого поля рассматриваются очаги дисплазии и неоангиогенеза, при этом поле может распространяться на весь орган или составлять его часть. Так, установлено, что в подверженных воздействию солнца, но гистологически неизмененных участках кожи (особенно у стареющих людей) в эпидермисе содержится значительное количество клеток с проонкогенными мутациями р53. Эти клетки определяются в виде кластеров, которые могут увеличиваться в размерах с течением времени. Клеточные популяции с мутациями р53 в гистологически неизмененных тканях также были обнаружены при раке других органных локализаций: в эпителии полости рта, слизистой оболочке бронхов, мочевого пузыря и пищевода. В качестве важнейших проявлений полевой канцеризации рассматриваются высокая частота мультифокальности рака (множественных поражений первичного происхождения одного и того же или различных гистологических типов), а также синхронные или метахронные опухоли, которые чаще остаются неучитываемыми и неоцениваемыми событиями. Существует большая сложность в установлении различий между действительно независимыми первичными поражениями и поражениями, являющимися результатом отдаленного распространения опухоли. Как правило, при эпидемиологической оценке мультифокальные опухоли одной органной локализации считаются как один вид рака, а предраковые поражения обычно вообще исключаются из статистики рака, поэтому статистика первично-множественных поражений в действительности значительно занижена. Этот вывод подтверждается огромным числом (до 30–40 % случаев) выявления предраковых и злокачественных поражений при аутопсии в случаях смерти от других причин. |
|
|
|
|
|
#3 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Основные положения концепции опухолевог поля были также прослежены на примере плоскоклеточного рака кожи (ПКРК), характеризующегося высокой частотой очагов дисплазии и cancer in situ в перитуморозной зоне. В модели ПКРК концепция полевой канцеризации имеет два важных аспекта для управления канцерогенезом. Во-первых, ПКРК возникает из множественных очагов предраковых изменений, но наличие рака хотя бы одной области сопровождается повышенным риском возникновения рака в других областях. Во-вторых, клинический рецидив ПКРК после полного хирургического иссечения может представлять собой развитие нового первичного рака, и риск рецидива может коррелировать со степенью злокачественности поля. Установлено, что пациенты с ПКРК от двух до девяти анатомических областей имеют двукратно повышенный риск рецидива по сравнению с пациентами с раком одной области. Поражение раком десяти и более областей сопровождается 12-кратным увеличением риска местного рецидива.
Важнейшей движущей силой эпидермального канцерогенеза является ультрафиолетовое (УФ) излучение, которое прямо (при длине волны 290–320 нм) или косвенно (при длине волны излучения 320–400 нм) повреждает ДНК клеток эпидермиса, обусловливая соматические мутации: инактивирующие – в генах-онкосупрессорах и активирующие – в онкогенах. Установлено, что и рак, и актинический кератоз, относящеся к важнейшим предопухолевым изменениям кожи и представляющие собой очаги эпидермальной дисплазии, имеют сходные генетические мутации, среди которых чаще встречается утрата функции генов-онкосупрессоров – ТР53 и NOTCH1, которая определяется в 95 % случаев при ПКРК и в 75 % случаев актинического кератоза. При этом чем больше очагов aктинического кератоза в одной анатомической области, тем выше риск развития ПКРК. Вторым эффектом УФ-излучения, способствующим эпидермальному канцерогенезу, оказывается локальная (местная) иммуносупрессия. Как уже установлено, показатель иммунного статуса влияет на формирование полей канцеризации при опухолях различной органной локализации. В частности, иммунокоррегирующая терапия приобретает большое значение в лечении очагов лейкоплакии, которая рассматривается как предопухолевое заболевание полости рта. Воспаление может оказывать как стимулирующее, так и подавляющее влияние на канцерогенез, что определяется фенотипической пластичностью макрофагов, выполняющих различные функции при остром и хроническом воспалении. Так, изменения при тесно связанном с хроническим воспалением актиническом кератозе могут быть эффективно устранены при лечении агонистами толл-подобных рецепторов (TLR), вызывающими мощную острую воспалительную реакцию, которая оказывает подавляющее действие на развитие рака. В очаге воспаления макрофаги могут дифференцироваться в так называемый «убивающий» фенотип М1, осуществляющий элиминацию микробов и раковых клеток, и «разрешающий» фенотип М2, направленный на разрешение или сдерживание острого токсического воспаления и связанный с «тлеющим» хроническим воспалением, которое способствует опухолевой трансформации. В подтип M2 макрофаги дифференцируются при воздействии противовоспалительных цитокинов: IL-4, IL-10, IL-13 или трансформирующего фактора роста бета (TGF-β). В целом активированные макрофаги M1 проявляют бактерицидную, иммуностимулирующую и подавляющую опухоль активность, в то время как макрофаги M2 участвуют в разрешении воспаления, процессах ремоделирования ткани и играют протуморогенную роль. Опухолевая микросреда, характеризующаяся как гипоксическая, обусловливает активацию генов, ответственных за фактор, индуцируемый гипоксией 1-альфа (HIF-1), являющийся, в свою очередь, модулятором поляризации макрофагов в M2 фенотип. |
|
|
|
|
|
#4 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Наш дальнейший рассказ начнем с описания одного конкретного случая рака, а именно развитию аденокарциномы на фоне пищевода Барретта (ПБ).
Пищевод Барретта представляет собой состояние, при котором метапластический цилиндрический эпителий замещает многослойный плоский эпителий, в норме выстилающий дистальный отдел пищевода. Название это скорее ироническое, поскольку дано по имени английского хирурга Нормана Барретта (Norman Barrett), который в своей работе (1950) утверждал, что пищевод не может быть выстлан цилиндрическим эпителием. Пищевод Барретта имеет клиническое значение, т. к. тесно связан с желудочно-пищеводным рефлюксом и, в меньшей степени, с дисплазиями и аденокарциномой пищевода и пищеводно-желудочного перехода. Метаплазия клеток нижней части пищевода рассматривается, как состояние, вызванное хроническим кислотным повреждением, эзофагит, и не является очерченным заболеванием. У 80-90% пациентов с ПБ преобладает смешанный кислотно-билиарный рефлюкс и основным фактором, определяющим развитие ПБ является многолетний анамнез ГЭРБ: при длительном воздействии кислоты и компонентов желчи на слизистую оболочку пищевода стволовые эпителиальные клетки, расположенные по ходу базальной мембраны плоского эпителия и протоков эзофагеальных желез, могут дифференцироваться не в характерный для пищевода многослойный плоский эпителий, а в более устойчивый к воздействию кислоты и желчных кислот цилиндрический эпителий. Так, кишечная метаплазия секретирует анионы, включая бикарбонат, на уровнях, более чем в пять раз превышающих уровень плоскоклеточного эпителия пищевода, а также выделяет густую прилипшую слизь. Секреция слизи может нарушаться в пищеводе Барретта при повышенном риске прогрессирования до аденокарциномы пищевода, в том числе с признаками хромосомной нестабильности и анеуплоидии. Клетки пищевода Барретта имеет плотные соединения клаудин-18, которые обеспечивают большую защиту от проникновения кислоты, чем дефицитные клаудин-18 плотные соединения плоского эпителия пищевода, а также сверхэкспрессирует гены, участвующие в защите и восстановлении слизистой оболочки , Отметим морфологическую гетерогенность сегмента ПБ: в его пределах могут одновременно обнаруживаться различные варианты метаплазированного цилиндрического эпителия - кардиального отдела и дна желудка, и кишечный эпителий. Дисплазия и развитие рака у пациентов с пищеводом Барретта напрямую связаны в основном с кишечной метаплазией. Правда существуют два вида кишечной метаплазии (КМ) – полная (тонкокишечная), содержащая интестинальные эпителиоциты и клетки Панета и неполная (толстокишечная), содержащая только бокаловидные клетки. Неполная толстокишечная метаплазия обладает наибольшим злокачественным потенциалом. У пациентов с эндоскопически выявляемым пищеводом Барретта желудочно-пищеводный рефлюкс чаще осложняется изъязвлением, образованием стриктур пищевода и кровотечением. Дисплазия у больных с пищеводом Барретта описывается как неопластическое повреждение цилиндриндрического эпителия, ограниченное базальной мембраной желез. Дисплазия может быть обнаружена на ранней стадии развития, когда она ограничена основанием крипты, что ставит под сомнение теорию о том, что ранние неопластические поражения in situ не могут подвергаться поверхностному созреванию. При ПБ дисплазия начинается в базальных клетках крипт, а затем распространяется дальше по криптам с неопластической прогрессией. ПБ является гиперпролиферативным и обладает клональными молекулярными аберрациями, многие из которых возникают до появления морфологической дисплазии. Например , аномалии содержания ДНК присутствуют в до 30 % морфологически недиспластических биоптатов ПБ. Пациенты с ПБ, у которых были обнаружены цитологические изменения глубоких крипт, свидетельствующие о дисплазии, но с поверхностным созреванием, продемонстрировали риск злокачественного новообразования, аналогичный риску у пациентов с обычной дисплазией низкой степени. Дело в том, что молекулярные пути, которые контролируют клеточную дифференцировку, отличаются от тех, которые контролируют клеточную пролиферацию (внимание!!!). Предполагается, что стволовые клетки крипт и транзитные амплифицирующиеся клетки наиболее подвержены неопластическим изменениям из-за их пролиферативного потенциала. В конечном итоге дисплазия крипт диагностируется при обнаружении явно диспластических эпителиальных клеток, ограниченных основаниями крипт, независимо от состояния поверхностного эпителия. В последние годы на смену понятию "дисплазия" приходит новое - интраэпителиальная неоплазия (ИН). По гистологическим признакам различают дисплазию высокой и низкой степени, в зависимости от уровня нарушения архитектоники желез, полиморфизма и полярности ядер. Так, при дисплазии III степени – клеточная атипия представлена различной величиной и формой клеток и их ядер, гиперхромией ядер, увеличением числа фигур митоза, наблюдаются нарушение архитектоники желез. В среднем, в течение 20-23 лет дисплазия высокой степени развивается у 20-25% больных с КМ и степень риска коррелирует с длиной сегмента ПБ. Дисплазия высокой степени (тяжелая) в трети случаев ассоциирована с уже существующей аденокарциномой. При наличии дисплазии эпителия ПБ риск малигнизации варьирует в зависимости от степени дисплазии и ее распространенности (количества ее очагов) - при низкой степени дисплазии – 0,8-1,9% в год; - при высокой степени дисплазии – 6-12,2% в год; - при наличии мультифокальной дисплазии эпителия ПБ риск развития аденокарциномы оказывается в 3 раза выше, чем при унифокальной. У части больных заболевание может длительное время не прогрессировать и лишь у небольшого процента (6% - 25%) пациентов с ПБ с дисплазией эпителия низкой степени развивается дисплазия высокой степени и затем рак. Описаны случаи, когда у пациентов с пищеводом Барретта и высокой степенью дисплазии в течение многих лет не выявлялось никаких признаков злокачественной трансформации. Однако быстрое развитие инвазивного рака встречается довольно часто; рак пищевода имеет тенденцию к метастазированию и нередко является инкурабельным. Влияние ожирения на развитие ПБ при ГЭРБ опосредовано двумя независимыми факторами: повышением внутрибрюшного давления с учащением гастроэзофагеальных рефлюксов кислоты и желчи в просвет пищевода и синтезом клетками жировой ткани провоспалительных цитокинов, таких как лептин и другие адиполептины. Существуют данные, что лептин усиливает воздействие кислоты на эпителий при ПБ и индуцирует дозозависимое усиление его пролиферации (до 65% от исходной). При ожирении происходит значительное увеличение содержания периэзофагеальной жировой ткани, из которой освобождаются вышеперечисленные цитокины, которые способствует развитию воспалительных и пролиферативных изменений в слизистой оболочке пищевода. Известно, что повышение концентрации лептина, синтезируемого в чрезмерных количествах при абдоминальном ожирении у мужчин, коррелирует с ростом частоты ПБ и АКП у мужчин. Данный факт объясняет многократное преобладание мужчин среди заболевших аденокарциномой: при индексе массы тела (ИМТ) более 30 у мужчин риск развития АКП пищевода возрастает в 16 раз по сравнению с мужчинами, имеющими ИМТ менее 22. Абдоминальное ожирение, помимо стимуляции гастроэзофагеального рефлюкса, все чаще признается как вызывающее состояние системного воспаления низкого уровня, характеризующегося повышенными уровнями провоспалительных цитокинов и рецепторов, таких как IL-6, TNF-альфа и sTNF-ß, альфа-рецептор 2 и С-реактивный белок. В свою очередь, хроническое состояние системного и локализованного воспаления и окислительного стресса способствует повреждению ДНК, клеточной пролиферации и укорочению теломер, что может увеличить риск развития клонов, содержащих небольшие и крупные геномные изменения, что в конечном итоге приводит к хромосомной нестабильности и аденокарциноме пищевода. Что касается H. pylori, то обнаружена обратная связь между инфекцией H. pylori и аденокарциномой пищевода; аналогичная обратная зависимость наблюдается в пищеводе Барретта, в основном из-за атрофических процессов в желудке, сопровождающихся снижением выделения соляной кислоты. Механизм увеличения риска аденокарциномы при употр***ении табака может быть связан с увеличением повреждений ДНК, встречающихся в слизистой оболочке Барретта у курильщиков по сравнению с некурящими. Применение статинов (снижают уровень холестерина) приводит к снижению риска прогрессирования до комбинированных конечных точек дисплазии высокой степени / аденокарциномы на 43%.. Способствует заболеванию также диета с низким содержанием овощей и фруктов. Антирефлюксная хирургия не снижает риск рака у пациентов с ГЭРБ или пищевода Барретта. Более того, у некоторых пациентов, получавших лечение мощными антирефлюксными препаратами (блокаторы протонной помпы) или перенесших антирефлюксное хирургическое вмешательство, в пищеводе появляются пятнистые зоны, где плоский эпителий растет поверх цилиндрического. В целом у пациентов с эндоскопически выявляемым пищеводом Барретта частота злокачественной трансформации составляет 0,8 % (1 случай на 125 больных в год), что в 40 раз выше, чем в остальной популяции. Последний раз редактировалось albert52; 09.09.2022 в 04:51.. |
|
|
|
|
|
#5 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Как я уже упоминал, стволовые клетки пищевода, будучи частично комиттированными, под воздействием кислоты и компонентов желчи могут дифференцироваться не в плоский, а в более устойчивый цилиндрический эпителий. Промежуточной стадией, вероятно, является формирование полиморфного эпителия, имеющего ультраструктурные и цитохимические черты как плоского, так и цилиндрического эпителия.
В ассоциированном с Барреттом онкогенезе окислительное фосфорилирование (ОФ) и гликолиз перепрограммируются на ранней стадии последовательности заболевания, причем ОФ положительно связано с экспрессией р53, а гликолиз отрицательно. р53 подавляет активность ключевых компонентов гликолиза, шунтируя промежуточные продукты высокой энергии в пентозофосфатный путь. Кстати супрессор опухолей р53 играет ключевую роль в защите от рака (эволюционно он сформировался как своего рода "намордник" для генов инфраструктуры). В физиологических условиях вновь синтезированный р53 быстро подвергается убиквитинированию и деградации, что приводит к «бесполезному циклу» и очень низкому «устойчивому» уровню белка. ТлКМ (толстокишечная метаплазия) является фоном для развития ИН и характеризуется экспрессией мутантного р53 (окислительно-индуцированное повреждение и мутации в гене р53, аннулирующие роль р53 как контрольной точки пролиферации и апоптоза), что делает ее прогностически менее благоприятной. Мутация TP53 важна для самых ранних диспластических клонов. Также на стадии ИН член семейства NF-κB RelA (или p65) транспортируется в митохондрии и рекрутируется в митохондриальный геном, где он может подавлять экспрессию митохондриальных генов, снижать потр***ение кислорода и клеточные уровни АТФ, тем самым способствуя переключению на гликолиз. Переход от ИН к аденокарциноме (АК) в ПБ сопровождается усилением пролиферации и относительным снижением апоптоза. Такие изменения в балансе между пролиферацией и апоптозом приводят к накоплению мутаций в опухолевых клетках и к прогрессии опухоли (см. выше). Потеря способности аккумулировать клаудины (белки адгезии) в области плотных контактов (ПК) в аденокарциноме на фоне ПБ приводит к исчезновению плотных контактов и способствует прогрессии опухоли (пролиферации, инвазии и метастазированию. Синтез данного белка в цитоплазме происходит, но из-за дисфункции цитоскелета нарушается его транспортировка в зону ПК. Повышенная экспрессия HIF1α и HIF2α была продемонстрирована во всей последовательности метаплазия-дисплазия-аденокарцинома. Барретт-ассоциированное воспаление с помощью канонических провоспалительных медиаторов, таких как интерлейкин-6 (IL6), IL1β и сигнальный преобразователь и активатор транскрипции 3 (STAT3), дополнительно усугу***ет воспаление и способствует AК. Также фактор транскрипции (TF) NF-κB (ядерный фактор "каппа-би") является ключевым медиатором воспаления и способствует выработке IL1β и TNF, причем TNF (Tumor necrosis factor) стимулирует гликолиз. Вообще, в процесс канцерогенеза ПБ вовлекаются множество генов супрессоров опухолевого роста (р53, р16, FHIT, Rb, АРС), регуляторов клеточного цикла (Cyclin D1, MDM2), факторов роста (EGF-R, TGF-A, с-егЬВ2) и молекул клеточной адгезии (E-cadherin, P-cadherin, a-catenin, p-catenin), а также протеаз (UPA). Все это отражает сложность и противоречивость как канцерогенеза вообще, так и при ПБ в частности. Геномная нестабильность, по-видимому, является фундаментальным свойством неопластической прогрессии, которая развивается до появления рака. Хромосомная нестабильность является наиболее распространенным доказанным источником нестабильности генома при раке человека, и ее лучше всего оценить при раке толстой кишки, где она составляет около 75-85% генетической нестабильности, приводящей к раку, по сравнению с нестабильностью микросателлитов, которая включает в себя оставшиеся 15-25%. В настоящее время имеется большое количество данных, свидетельствующих о том, что большинство аденокарцином пищевода возникает в связи с процессом получения или потери целых хромосом или больших частей хромосом. Недавнее исследование аденокарцином пищевода показало в среднем 97 изменений числа копий (в диапазоне 23-208) на рак, размер которых варьировался от небольших гомозиготных делеций до больших областей хромосом. Пятилетняя кумулятивная заболеваемость аденокарциномой пищевода составила 79,1% у людей с 9р LOH (потерей гетерозиготности), 17р LOH и аномалией содержания ДНК (тетраплоидия и анеуплоидия) в начале исследования, тогда как у тех, у кого этого не было, был нулевой процент кумулятивной заболеваемости почти восемь лет после базовой эндоскопии. А на долю микросателлитнрй нестабильности приходится примерно 5% аденокарциномы пищевода. Можно сделать вывод. что мутация и метилирование CDKN2A (гена ингибитора циклинзависимой киназы 2A), 9p LOH и 17p LOH, мутации TP53 были драйверами для клональной экспансии предопухолевых клеток. Напротив, все микросателлитные сдвиги и другие события LOH вели себя как нейтральные мутации. Ведущим кандидатом на химиопрофилактику аденокарциномы пищевода в настоящее время является аспирин; использование аспирина и других нестероидных противовоспалительных препаратов (НПВП) было связано со значительно сниженным риском перехода пищевода Барретта в аденокарциному. Отмечено также значительное уменьшение общей площади пищевода Барретта среди тех, кто принимал целекоксиб (антагонист СОХ-2 и простагландинов). Добавлено через 1 час 7 минут Все вышеизложенное по пищеводу Барретта подтверждает мою двухстадийную концепцию канцерогенеза. Дисплазии на фоне КМ соответствуют первой стадии, когда часть генов перестраивает свою деятельность с целью на фоне хронического воспалительного стресса минимизировать функции клетки. Другая, преобладающая часть генов с помощью мощных защитных систем позволяет, так сказать, сохранять клетке лицо. Когда начинаются мутации этой части генома, особенно среди генов - супрессоров, то в защитных рядах возникают пробоины и клетка начинает деградировать. Среди первой части генома, я называю их генами инфраструктуры, тоже могут возникать мутации, но тогда клетка обычно быстро погибает. Чем сильнее выражены мутации, тем агрессивнее поведение уже раковой клетки, вплоть до стадии лангольеров (см. выше). Я не придерживаюсь взгляда, что раковые клетки развиваются непосредственно из стволовых клеток. Уже по поводу ПБ я указывал, что зрелый эпителий возникает из частично комиттированных клеток, то есть уже не совсем стволовых. В стрессовых ситуациях, обычно предшествующих дисплазии или, как сейчас правильнее говорить, интраэпителиальной неоплазии(ИП), перед этими клетками стоит та же дилемма, как перед товарищем Суховым, помереть сразу или помучиться. Если клетка выбирает "помучиться", то она должна как-то дифференцироваться. Что она и как - то делает, хотя на высоких стадиях ИП морфологически она уже почти ничем не отличается от раковой. Только молекулярные онкомаркеры позволяют их кое-как различить. По поводу терминологии. В специальной литературе употребительны термины гены домашнего хозяйства и гены роскоши. Гены домашнего хозяйства кодируют белки-ферменты, которые принимают участие в жизненно важных для клетки метаболических процессах. К ним относятся обеспечение процессов: репликации (удвоения) ДНК, транскрипции, трансляции, а также анаболизма и катаболизма (гликолиз, цикл Кребса, глюконеогенез, расщепление белков, жиров и углеводов, биосинтез аминокислот и нуклеотидов и т. д.). Это понятие шире понятия генов мнфраструктуры, так как гены домашнего хозяйства неспецифичны и могут работать как под руководством генов инфрастуктуры, так и генов надстройки (роскоши). Что же касается генов роскоши, то мне чудится в этом названии какой-то идеологический подтекст. Так можно оправдать даже канцерогенез, когда гены инфраструктуры, в трудных условиях борющиеся за выживание клетки, могут испывать нечто вроде классовой ненависти к генам, расточительно с их точки зрения тратящих драгоценные ресурсы. Мое название "гены надстройки" более нейтрально и филогенетически правильнее, а то классовая борьба, как показывают история и онкология, к ничему хорошому не приводит. Последний раз редактировалось albert52; 09.09.2022 в 10:21.. |
|
|
|
|
|
#6 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Следующим у нас идет рак желудка.
Из трех основных типов злокачественных опухолей желудка, аденокарциномы желудка (GC), неходжкинской лимфомы и стромальных опухолей желудочно-кишечного тракта, приблизительно 95% составляют GC, который остается одним из наиболее часто диагностируемых видов рака в мире. У мужчин риск развития РЖ в два раза выше, чем у женщин, 18% случаев РЖ связаны с курением табака; обычно его диагностируют в возрасте 60–80 лет. Наблюдается 5-кратное увеличение риска РЖ в результате комбинированного действия алкоголя и курения. Опухоли чаще возникают в антруме или нижней трети желудка, наиболее часто на малой кривизне. Некоторые из таких опухолей многоцентровые. Их локализация, видимо, меняется с возрастом, с увеличением проксимальных опухолей и снижением их в антруме. РЖ подразделяют на 2 основные категории: ранний (early carcinoma) и распространенный (advanced carcinoma). К раннему относят рак, поражающий слизистую оболочку желудка или подслизистый слой, независимо от наличия или отсутствия метастазов в лимфатических узлах, которые можно диагностировать лишь гистологически. Так, важными гистологическими признаками внутрислизистой инвазии являются одиночные опухолевые клетки в собственной пластинке и значительное слияние опухолевых желез разных размеров. При нем 5-летняя выживаемость находится в пределах 90-100 %, тогда как при запущенном РЖ всего 5-20%. Процесс опухолевой трансформации клеток до первых клинических проявлений РЖ длительный, многоэтапный. Продолжительность «естественной эволюции» РЖ составляет 15-25 лет, что обусловливает возможность его диагностики на ранней стадии, которая может продолжаться с момента обнаружения заболевания от 6 мес до 10 лет и более. Лица с высокой степенью риска заболевания РЖ, у которых морфологически была диагностирована тяжелая интраэпителиальная неоплазия (дисплазия) эпителия, подлежат динамическому наблюдению с обязательным проведением рентгеноскопии и гастроскопии не менее чем 2 раза в год. РЖ - очень гетерогенное заболевание с морфологической и молекулярной точек зрения. Существующие в настоящее время многочисленные гистологические и молекулярные классификации отражают такую гетерогенность. На практике применяется ставшая классической классификация, предложенная в 1926 г. R. Borrmann. В этой классификации определены критерии четырех анатомических типов роста распространенного рака: • тип I - полиповидный тип, обладающий экзофитным ростом в просвет желудка; • тип II - экзофитный изъязвленный тип опухоли, характеризующийся изъязвлением с приподнятыми краями и четкими границами - так называемый блюдцеобразный рак; • тип III - язвенно-инфильтративный тип, имеющий вид изъязвления, без четких границ с окружающей слизистой оболочкой желудка и с интрамуральной инфильтрацией желудочной стенки; • тип IV - диффузно-инфильтративный (infiltrative) тип, распространяющийся поверх -ностно в слизистой и подслизистой оболочке с образованием плоских поражений с наличием мелких изъязвлений или без них. В распространенной стадии образуется диффузное циркулярное утолщение стенки желудка (скирр) на значительном протяжении по типу «кожаной бутылки», зачастую с минимальными изменениями в слизистой оболочке. Гистологическое строение РЖ отличается многообразием форм аденокарциномы, происходящей из камбиальных эпителиальных клеток слизистой желудка, находящихся в области перешейка желудочных желез. Размножаясь эти клетки как поднимаются в зону покровного эпителия, так и спускаются в главную часть желез; этим железы желудка напоминают крипты толстой кишки. Во многих случаях обнаруживаются сочетания различных гистологических форм РЖ. По мере инвазии карциномы в глубь стенки желудка комплексы опухолевых клеток зачастую утрачивают дифференцировку и предстают в виде мелких лимфоцитоподобных клеток, образуя тяжи и мелкие трубчатые структуры. Кардиальная GC делится на две различные этиологические сущности: GC кардии, подобной пищеводу, которая связана с гастроэзофагеальным рефлюксом, курением и диетой и часто встречается в регионах с низким риском GC, и дистальной желудочно-подобной GC кардии, связаной с наличием H. pylori и атрофией слизистой, и является наиболее частым вариантом GC кардии в регионах с высоким риском GC. Аденокарциномы кардии в целом агрессивны и имеют плохой прогноз. GC некардиального типа в соответствии с классификацией Лорена подразделяются на кишечный, диффузный, смешанный и недетерминированный подтипы. GC кишечного типа характеризуется образованием железистых структур, дистальной локализацией в желудке и обычно встречается у пожилых людей. Она также чаще встречается у мужчин и у лиц с более низким социально-экономическим статусом. Этому типу GC часто предшествует предраковая фаза, которая начинается с перехода нормальной слизистой оболочки в мультифокальный атрофический гастрит. Это первоначальное гистологическое изменение сопровождается кишечной метаплазией, дисплазией и, наконец, аденокарциномой. Высокая пролиферативная активность клеток «кишечного» рака определяет высокую скорость их роста. Быстрое клиническое течение рака интестинального типа определяет его ранние клинические проявления, а тесная связь клеток ведет к меньшей инвазивности, чем обеспечивается возможность радикальной операции. Так, интестинальные опухоли, как правило, являются экзофитными, часто изъязвляются, ассоциированы с гастритом тела желудка, с атрофией и кишечной метаплазией. Кишечный тип рака состоит из клеток, формирующих железы; четко формируемые железы формируют высокодифференцированную карциному, а смазанные железы – как низкодифференцированную аденокарцинома. Диффузный тип рака обладает более низкой пролиферативной активностью, что определяет длительность латентного течения таких опухолей. Слабая связь клеток друг с другом ведет к высокой инвазивности диффузного рака, что определяет больший объем радикального оперативного вмешательства и объясняет более низкий процент 5-летней выживаемости. Такая опухоль быстро проникает в стенку желудка и обычно приводит к утолщению, не будучи видимым в виде язвы (как при кишечном раке желудка). Вариантом диффузного типа является перстневидноклеточная аденокарцинома, опухолевые клетки которой содержат обильный цитоплазматический муцин, смещающий ядро к периферии. Развитие рака желудка диффузного типа (РЖК) инициируется отслоением опухолевых клеток вокруг пролиферативной зоны эпителия. В то время как клетки, отслоившиеся с апикальной стороны эпителия, теряются в просвете, базально отслоившиеся клетки могут образовывать скопления в собственной пластинке слизистой. Ослабленная функция слипчивых соединений может привести к базально-клеточному расслаиванию либо за счет экструзии (выдавливания) клеток соседними клетками, либо за счет дезориентации оси клеточных делений. Расслаивание клеток может быть вызвано селективной потерей E-кадгерина в отдельных клетках внутри здорового эпителиального слоя, при этом нарушение регуляции кадгерин-опосредованной адгезии блокирует апикальную экструзию (вовне). GC диффузного типа плохо дифференцируется, поражает более молодых людей и тесно связана с генетической предрасположенностью (вариант наследственного диффузного GC, который связан с мутациями зародышевой линии в CDH1, гене, кодирующем E-кадгерин). Кроме того, она не связана с формированием предраковых поражений и, как было установлено, распостраняется на всю поверхность желудка. Этот тип GC одинаково присутствует у представителей обоих полов и связан с худшим прогнозом по сравнению с GC кишечного типа. Смешанный РЖ, определяемый двойным паттерном дифференцировки - железистая / солидная (кишечная) и изолированно-клеточная карцинома (диффузная) демонстрирует двойную метастатическую картину (гематогенные метастазы и перитонеальное распространение с метастазами в лимфатические узлы), предполагая кумулятивный эффект н***агоприятного поведения кишечного и диффузного GC. Последний раз редактировалось albert52; 09.09.2022 в 11:59.. |
|
|
|
|
|
#7 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Отметим, что гетерозиготные мутации зародышевой линии неоднократно обнаруживались в гене E-кадгерина ( CDH1 ) и гене α-катенина ( CTNNA1 ), что вызывает их инактивацию и, следовательно, снижение сцепления клеток (см. выше). Мутации этих генов считаются главной причиной HDGC ( наследственный диффузный рак желудка). У людей с мутацией в гене CDH1 пожизненный риск диффузного рака желудка оценивается к 80 годам от 67% до 70% для мужчин и от 56% до 83% для женщин. Женщины с мутацией в гене CDH1 имеют также к 80 годам примерно от 39% до 52% риска развития дольчатого рака молочной железы.
Е-кадгерин представляет собой кальций-зависимый трансмембранный гликопротеин, который взаимодействует с внеклеточным доменом с образованием адгезивных соединений, в то время как цитоплазматические домены соединяются с цитоскелетом через β- и α-катенин, чтобы механически соединять актомиозиновые цитоскелеты соседних клеток. Этот белок контролирует эмбриогенез, наблюдает за ростом клеток, регулирует созревание клеток и поддерживает целостность эпителия и архитектуру ткани. Комплекс cadherin-catenin также служит сигнальной платформой благодаря ассоциации с многочисленными дополнительными белками, включая рецепторы факторов роста и др. сигнальные молекулы. Таким образом, слипчивые соединения регулируют огромное количество внутриклеточных сигнальных путей , а также организацию актомиозинового цитоскелета. Интересно, что FOCAD, белок, участвующий в фокальной адгезии, также активировался у мутантов, указывая на возможный механизм компенсации, когда межклеточная адгезия была нарушена с потерей функции CDH1. С другой стороны, активируемый белок ASPN находится в строме опухоли и способствует совместной инвазии фибробластов, ассоциированных с раком, и раковых клеток. Обычно каждая клетка имеет по 2 копии каждого гена: 1 унаследован от матери и 1 унаследован от отца. HDGC следует аутосомно-доминантному типу наследования, при котором мутация происходит только в 1 копии гена. Это называется мутацией зародышевой линии. Следовательно, ребенок, у которого есть родитель с мутацией, имеет 50% шанс унаследовать эту мутацию. Средний возраст начала HDGC у носителей мутации - 38 лет (диапазон от 14 до 69 лет), если затронутые семьи соответствуют указанным ниже критериям показаний, частота обнаружения мутаций в CDH1 составляет 25-50%. Поэтому мутации в этом гене, вероятно, не единственная причина семейной диффузной карциномы желудка. В семьях с признаками мутаций риск заболевания низок до 20 лет, поэтому профилактическая гастрэктомия рекомендуется носителям в возрасте от 20 лет (исключения в особенно раннем возрасте появления в семье). В подвергшихся воздействию семьях без признаков мутации результаты патологической биопсии (гастроскопия один раз в год, 30 биопсий) являются показанием для гастрэктомии. |
|
|
|
|
|
#8 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Вставка.
Регуляция биосинтеза белка Регуляция необходима для поддержания баланса разнообразных белков в клетке или организме, для изменения этого баланса в меняющихся условиях окружающей или внутриорганизменной среды, для обеспечения смены белков в процессах клеточной дифференцировки и развития организма, для адекватного ответа на специфические внешние сигналы или н***агоприятные воздействия. Живые клетки используют несколько различных способов или путей такой регуляции, но практически во всех случаях она осуществляется через регуляцию инициации трансляции. Это означает, что регуляторные механизмы трансляции направлены на то, чтобы разрешить или не разрешить инициацию трансляции данной мРНК, и если разрешить, то с какой эффективностью (скоростью инициации): чем больше скорость, тем больше образуется белка. Существуют три основных способа, как регулировать трансляцию. Первый способ – позитивная регуляция на основе сродства мРНК к инициирующей рибосоме и факторам инициации (дискриминация мРНК (англ. discriminate — отличать, распознавать)). Второй способ – негативная регуляция с помощью белков-репрессоров, которые, связываясь с мРНК, блокируют инициацию (трансляционная репрессия). При этом белок-репрессор имеет специфическое сродство к участку мРНК в районе инициации трансляции (часто к участку с нестабильной вторичной структурой) и, связываясь с ним (и стабилизируя его), создает барьер либо для посадки инициирующих рибосомных частиц, либо для движения рибосомы к месту инициации. Этими двумя способами регулируются индивидуальные мРНК, то есть трансляция каждой мРНК может специфически контролироваться независимо от других мРНК клетки. Третий способ – тотальная регуляция трансляции всей совокупности мРНК клетки посредством модификации факторов инициации. Отметим что при наличии общих черт регуляции на уровне трансляции у прокариотических (бактерии) и эукариотических организмов тотальная регуляция за счет модификации факторов инициации характерна, по-видимому, только для эукариот. Скорость или частота инициации трансляции рибосомами может сильно различаться для разных мРНК. У прокариотических организмов это определяется тем, что инициирующие или рибосомосвязывающие участки разных мРНК имеют разное сродство к рибосомам и, таким образом, с разной эффективностью связывают рибосомные частицы. На основании разницы в эффективности инициации можно говорить о «сильных» и «слабых» мРНК. На сильных мРНК инициация происходит часто, на них нанизывается много рибосом (образуются плотные полирибосомы) и соответственно продуцируется много молекул белка. Редкая инициация трансляции на слабых мРНК дает в результате редкую посадку рибосом на эти мРНК и, следовательно, низкую белковую продукцию. Как правило, если белок имеет четвертичную структуру, построенную из разных субъединиц в различном соотношении, то сила мРНК или ее отдельных участков (цистронов), кодирующих эти субъединицы, координирована с пропорцией субъединиц в структуре. Например, мембранный комплекс протонной АТФазы бактерий построен из трех типов субъединиц в соотношении 1:2:10 (a1b2c10), и соответственно субъединица c кодируется очень сильным цистроном мРНК, субъединица a – слабым, а субъединица b – цистроном промежуточной силы. Похожая ситуация наблюдается и в эукариотических клетках, но там дискриминация мРНК обусловлена скорее разным сродством факторов инициации, а не самих рибосом к разным 5'-проксимальным инициаторным структурам мРНК. Так как факторы инициации в любом случае локализуются на инициирующих малых рибосомных субчастицах, то они и определяют разную эффективность посадки рибосом на разные мРНК. Различная сила мРНК в значительной мере определяет соотношение продукции различных белков в клетке. Так, структурные белки мембран, рибосомные белки, факторы элонгации, белки оболочки вирусов и другие белки, требуемые в большом количестве, например, пищеварительные ферменты, кодируются сильными мРНК, а многие регуляторные белки – слабыми мРНК. Трансляция контролируется с помощью большого количества механизмов, наиболее понятным из которых является фосфорилирование факторов трансляции и их регуляторов, особенно ключевых факторов инициации трансляции эукариот (eIFs). mTORC1-опосредованное фосфорилирование eIF4E-связывающих белков (4E-BP) и рибосомных киназ S6 (S6Ks) приводит к устойчивой эффективности инициации трансляции (см выше). eIF4F представляет собой гетеромерный комплекс, который связывает структуру кэпа и состоит из eIF4A (РНК-геликазы), eIF4E (связывающего кэп белка) и eIF4G (каркасный белок), который связывает как eIF4E, так и eIF4A. После связывания с кэпом eIF4F раскручивает 5'-проксимальную вторичную структуру мРНК, чтобы облегчить связывание преинициативного комплекса 43S (который включает 40S рибосомную субъединицу). После сканирования вдоль 5'-UTR на предмет подходящего стартового кодона AUG, комплекс предварительной инициации затем растворяется, и рибосомная субъединица 60S присоединяется к субъединице 40S с образованием трансляционно компетентной 80S рибосомы. Этому процессу способствует фактор eIF5B (5B), который инициирует удлинение трансляции. Фаза элонгации характеризуется добавлением аминокислот к растущему пептиду и транслокацией рибосом по мРНК, процессом, который частично контролируется фактором элонгации eEF2. Наконец, прекращение трансляции связано с высвобождением вновь синтезированного пептида и диссоциацией рибосомы от мРНК. Для связывания инициаторной аминоацил-тРНК (Met-tRNAi) с малой рибосомной субчастицей в процессе инициации трансляции требуется eIF2 в комплексе с ГТФ (GTP); в ходе инициации ГТФ гидролизуется на ГДФ (GDP) и ортофосфат и eIF2 в комплексе с ГДФ (eIF2 : GDP) освобождается из рибосомы. В норме дополнительный фактор eIF2В принимает участие в том, чтобы превратить отработанный (неактивный) eIF2 : GDP в необходимый для следующей инициации eIF2 : GTP. Этот фактор играет каталитическую роль в обмене ГДФ на ГТФ, и его в клетке мало. Когда eIF2 фосфорилируется фосфокиназой (eIF2Р), он может обычным образом участвовать в инициации трансляции, но, освободившись из рибосомы с ГДФ (в форме eIF2Р : GDP), он образует прочный комплекс с eIF2В (eIF2В : eIF2Р : GDP) и тем самым связывает весь eIF2В клетки, лишая последнюю возможности катализировать регенерацию eIF2 : GTP из eIF2 : GDP, тем самым подавляя синтез белка. Механизмы трансляционной репрессии обеспечивают пути модуляции скоростей инициации трансляции в широких пределах либо в зависимости от внешних сигналов (эффекторов), либо по типу обратной связи, когда мРНК репрессируется своим же продуктом. Что же касается эффекторов, то, например, в животных клетках белок-репрессор блокирует инициацию синтеза белка ферритина, а железо в качестве эффектора лишает репрессор его мРНК-связывающих свойств и дерепрессирует ферритиновую мРНК, тем самым разрешая ее трансляцию. Кроме типичной трансляционной репрессии эукариоты выработали механизм маскирования мРНК, когда соответствующая мРНК становится недоступной не только для инициации трансляции, но и фактически выведена из всех других процессов ее возможных превращений или изменений – деградации нуклеазами, ферментативной модификации ее 3'-конца путем полиаденилирования и пр. Маскирование и демаскирование мРНК являются особенно характерными для процессов гаметогенеза (оогенеза и сперматогенеза), раннего эмбрионального развития, клеточной дифференцировки, гормонального включения или выключения функций. Например, в оогенезе происходит запасание некоторых материнских мРНК в маскированной форме, и часть этих мРНК демаскируется в ответ на оплодотворение яйцеклетки, обеспечивая белковый синтез на самых ранних стадиях эмбриогенеза: дробления, бластулы и ранней гаструлы. Наиболее обычный путь тотальной регуляции белкового синтеза у эукариот, во всяком случае у животных и грибов, – это активация специальной фосфокиназы (eIF2Р), которая фосфорилирует фактор инициации eIF2, что приводит к подавлению инициации трансляции всех мРНК клетки (см. выше). Сигналами для активации фосфокиназы в клетке являются тепловой шок и другие виды стрессовых воздействий, недостаток ростовых факторов, аминокислотное голодание, недостаток железа, вирусные инфекции. Степень подавления белкового синтеза может варьировать в зависимости от уровня стресса. Для многих локализующихся мРНК репрессия трансляции отменяется сразу после прибытия в конечный субклеточный пункт назначения. Субклеточное положение белка является ключевым фактором, определяющим его функцию. Локализующиеся мРНК упакованы в рибонуклеопротеидные комплексы (комплексы RNP), которые взаимодействуют с моторами цитоскелета для направленного транспорта по дорожкам цитоскелета, что является эволюционно консервативным механизмом для контроля локализации белка. При этом мРНК совместно собираются в мультимолекулярные транспортные единицы. Различные регуляторы трансляции, которые обнаруживаются в комплексах RNP, представляют собой челночные белки, которые содержат сигналы ядерной локализации и накапливаются, по крайней мере, временно в ядре. Транспортные RNP могут иметь общие компоненты с процессинговыми тельцами (P-тельцами) - общими цитоплазматическими сайтами для подавления трансляции. Локализованные мРНК впоследствии транслируются в ответ на локализованные сигналы. Синтез на месте придает белку новые сигнальные свойства и помогает поддерживать локальный протеомный гомеостаз. Локализация РНК может быть эволюционно консервативным механизмом, который децентрализует геномную информацию и делегирует ее контроль субклеточным компартментам. Генетическая информация, закодированная в ядре, обеспечивает поставку мРНК путем транскрипции, из которой выбираются определенные наборы мРНК для субклеточной локализации. Т.о. субклеточные целевые коллекции мРНК могут функционировать как геномный форпост. Последний раз редактировалось albert52; 13.03.2023 в 00:29.. |
|
|
|
![]() |
| Социальные закладки |
| Опции темы | |
| Опции просмотра | |
|
|