![]() |
|
|
|
|
#1 |
|
Пользователь
Регистрация: 26.04.2020
Сообщений: 30
Спасибо: 0
Спасибо 2 в 2 постах
Репутация: 10
|
[QUOTE=albert52;452814]Молекулярные изменения, которые накапливаются во время канцерогенеза поджелудочной железы, ......
Сказки про соломенного бычка на молекулярном уровне |
|
|
|
|
|
#2 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Вставка 6.
В клетке существуют различные сигнальные пути, таких как FGF, Hedgehog, Wnt, TGFß, Notch и др., которые циклично включаются или выключаются. Регуляторный эффект сигнальных каскадов достигается путем активации факторов транскрипции, образующих ген-регуляторные сети, в рамках которых они взаимодействуют друг с другом и регулируют экспрессию генов, расположенных ниже по иерархии, а также экспрессию собственных генов. Основополагающую роль в этих сетях выполняет группа генов, кодирующих мастер-регуляторы, играющие ключевую роль в определении судьбы клеток при развитии организма. B целом мастер-ген можно охарактеризовать как ген, который экспрессируется в начале развития определенного типа клеток, участвует в их дальнейшей специализации и при аномальной экспрессии может привести к перепрограммированию клеток в другой тип. При внутриклеточных процессах, происходящих при эмбриогенезе, регенерации поврежденных органов и опухолеобразовании используются одни и те же мастер-регуляторы. Так, в процессе опухолеобразования активируются эмбриональные сигнальные каскады и ген-регуляторные сети, приводящие к трансдифференциации и пролиферации клеток, поддержанию отдельной популяции раковых клеток в стволовом состоянии, появлению у ряда эпителиальных клеток мезенхимальных свойств, способствующих их инвазии и распространению по организму (эпителиально-мезенхимальный переход). Мастер-гены, отвечающие за перечисленные выше процессы, в перспективе могут рассматриваться как маркеры при диагностике рака и как мишени направленной противоопухолевой терапии. Среди регуляторных генов эмбриогенеза поджелудочной железы можно выделить потенциальные мастер гены PDX1, PTF1A, SOX9, GATA4 и HNF1b, активность которых имеет ключевое значение для развития поджелудочной железы и дисрегуляция которых играет принципиально важную роль при канцерогенезе поджелудочной железы. В последние 50 лет исследователи, изучающие рак, в основном, сосредоточились на модели, в которой образование рака рассматривается как накопление нарушений, возникающих из-за генетических и молекулярных изменений в соматических клетках, а опухоли интерпретируются как кластеры быстро реплицирующихся мутантных клеток, которые выживают или умирают в соответствии с принципами теории эволюции. Однако например, при изучении трех подтипов эпендидомных опухолей головного мозга было показано, что один подтип имеет внутрихромосомную транслокацию, создающую новый управляющий опухолью ген, у другого типа отсутствуют такие мутации, но есть аберрантные эпигенетические модификации, а у третьего нет ни мутаций, ни эпигенетических аберраций. С другой стороны, были обнаружены тысячи мутаций в связанных с канцерогенезом генах, в том числе в драйверных генах, в эпидермисе нормального века, где исключительно редко развивается рак. Существует также эмбриологическая теория происхождения рака, согласно которой рак представляет собой аномальное состояние клетки, которое может возникнуть в стволовых клетках взрослого человека, при котором механизм совместного регулирования генов дифференцировки, пролиферации, инвазии клеток и миграции может быть повторно активированным в совершенно неуместном контексте. Так, в поддержании раковых стволовых клеток большую роль играет микроокружение, так наз. "раковые ниши". Наиболее заметной и специфической особенностью, которая может наблюдаться в этих клетках, является рекапитуляция эмбриональных плюрипотентных сетей и избыточная экспрессия эмбриональных генов. Во время эмбриогенеза сигнальные пути TGF-β, FGFR/MAPK или Akt, Wnt, Notch и sonic hedgehog поддерживают самообновление и плюрипотентность эмбриональных стволовых клеток. Эти пути в конечном итоге активируют три основных фактора транскрипции: Oct3 / 4, SOX2 и Nanog. Эти факторы активируют специфичные гены и поддерживают состояние эмбриональных стволовых клеток путем ингибирования генов дифференцировки. Во время развития эмбриона и спецификации органа, плюрипотентные гены ингибируются, и гены дифференцировки активируются. Таким образом, во взрослых тканях уровни экспрессии генов «стволовости» Oct3 / 4, SOX2, Nanog и других эмбриональных очень низки. Однако во время инициации и прогрессирования рака эти гены и сети активируются. Дедифференцировка в раковые стволовые клетки может происходить в ответ на различные факторы, такие как повреждения и стрессовые воздействия, что приводит к возникновению и прогрессированию рака. Так дедифференцировка в стволовые клетки глиомы происходит в ответ на стресс и вызванную гипоксией передачу сигналов HIF1α. Также усиленный гликолиз, характерный для стволовых клеток, хорошо ложится на пролиферативный потенциал раковых клеток (см. выше). Последний раз редактировалось albert52; 10.05.2020 в 09:11.. |
|
|
|
|
|
#3 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Продолжим.
Пищеварительные ферменты продуцируются клетками серозного ацинуса в большей экзокринной части поджелудочной железы. Каждый ацинус поджелудочной железы состоит из нескольких серозных клеток, окружающих очень маленький просвет. Ацинарные клетки поляризованы, с округлыми базальными ядрами и апикальными многочисленными гранулами зимогена, типичными для секретирующих белок клеток. Ацинусы окружены лишь небольшим количеством соединительной ткани с фибробластами. Каждый ацинус дренируется коротким интеркалированным протоком с одинарным плоским эпителием. Клетки этих небольших протоков простираются в просвет ацинуса в виде небольших бледно-окрашенных центроацинарных клеток , уникальных для поджелудочной железы и выделяют большой объем жидкости, богатой HCO3 - (бикарбонат-ионы), которая которая увлажняет, очищает и подщелачивает ферментативную секрецию ацинусов. Эти пищеварительные ферменты включают в себя несколько протеаз, альфа-амилазы, липазы и нуклеазы ( ДНКазы и РНКазы ). Протеазы секретируются как неактивные зимогены ( трипсиноген, химотрипсиноген, проэластазу, калликреиноген и прокарбоксипептидазы). Так, ингибитор трипсина совместно упаковывается в секреторные гранулы с трипсиногеном, который расщепляется и активируется энтеропептидазами в двенадцатиперстной кишке, генерируя трипсин, который активирует другие протеазы в каскаде. Интеркалированные протоки сливаются с внутрилобулярными протоками и более крупными межлобулярными протоками , которые имеют все более столбчатый эпителий, прежде чем присоединиться к основному протоку поджелудочной железы, который проходит по длине железы. Все протоковые клетки имеют базовый уровень активации SOX9 генов, препятстующий превращению этих клеток в ацинарные и эндокринные клетки. Также для SOX9 была показана его связь с процессом регенерации ПЖ при повреждениях. Регенерационный потенциал во взрослом органе обычно связан с Ptf1a+ ацинарными клетками, в которых при повреждении ПЖ происходит факультативная реактивация мультипотентных факторов SOX9 и Hnf1β, в результате чего происходит ацинарно-протоковый переход (АПМ — ацинарно-протоковая метаплазия - см. выше). Согласно современной концепции развития ПАПЖ (протоковой аденокарциномы ПЖ), клетками-родоначальниками ее классического подтипа являются ацинарные клетки. Ключевым инициирующим событием является АПМ. Этот процесс активируется при остром панкреатите и непосредственно связан с регенерацией ПЖ. В норме это заканчивается редифференциацией «протоковых» клеток в ацинарные, однако при появлении дополнительных факторов это не происходит и могут развиться ПанИН-I, II, III и в конечном итоге инвазивная аденокарцинома. При хроническом панкреатите (ХП) наблюдается значительная извитость и расширение протоков с ретенционными кистами. Значительная структурная перестройка протоковой системы ПЖ у больных ХП наблюдалась в 87,5 % случаев, в 17,5 % случаев картина дополнялась явлениями ацинарно-протоковой метаплазии с трансформацией ацинарных клеток в протоковые и формированием мелких дуктулоподобных структур, так называемых тубулярных комплексов. В дальнейшем это приводит к образованию белковых пробок и панкреатический секрет инфильтрирует окружающую ткань с формированием отека железы, за которым следует интрапанкреатическая активация пищеварительных ферментов с угрозой панкреонекроза. В 87,5 % случаев ХП паренхима ПЖ, таким образом, представляла собой небольшие атрофичные ацинусы, окруженные плотными фиброзными муфтами, с увеличенным количеством зияющих протоков разного диаметра. В протоковой аденокарциноме к этому присоединяются клеточный атипизм прежде всего клеток мелких интеркалированных протоков, а также тканевой атипизм с высокой степенью извитости мелких протоков, часто тупиковых (см. выше). Последний раз редактировалось albert52; 10.05.2020 в 18:52.. |
|
|
|
|
|
#4 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Фундаментальным аспектом эмбриональной гипотезы о происхождении рака является эпителиально-мезенхимальный переход (ЭМП) и обратный ему мезенхимально-эпителиальный переход (МЭП), которые происходят во время гаструляции эмбриона.
В процессе опухолевой прогрессии реактивация эмбриональной программы ЭМП ответственна за метастатическое распространение раковых клеток от первичной опухоли. Ключевыми событиями в ЭМП являются: - растворение эпителиальных межклеточных соединений; - потеря апикально-базальной полярности и приобретение передне-задней полярности; - реорганизация архитектуры цитоскелета и изменение формы клеток; - снижение экспрессии генов, ответственных за эпителиальный фенотип и активация генов, которые формируют мезенхимальный фенотип, увеличение подвижности и, во многих случаях, способность к ремоделированию внеклеточного матрикса, обеспечивающая возможность инвазии клеток. Важно отметить что, клетки, которые подвергались ЭМП, приобретают устойчивость к старению и апоптозу. Основные шаги ЕМТ в онкологии: опухолевые клетки могут мигрировать и проникать в окружающую строму путем усиления транскрипции нескольких маркеров и генов инвазивности, таких как N-кадгерин, виментин и мезенхимальные интегрины. Затем они разлагают внеклеточный матрикс (ЕСМ) и распространяются в кровоток или в лимфатические пути. После распространения опухолевые клетки могут поражать другие органы, где они могут следовать разным судьбам, но в основном образуют растущие микрометастазы. Агрессивный характер РПЖ обусловлен главным образом метастазированием, что облегчается десмоплазией (свойством эпителиальных тканей воспроизводить элементы соединительной ткани), специфическим микроокружением опухоли и способностью опухолевых клеток проходить EMT и принимать подвижный и инвазивный фенотип. При этом изменяется адгезия между клетками и клеточным матриксом, теряется клеточная полярность, деградируется ECM и усиливается взаимодействие клетка-строма. Передача сигналов TGF-β играет центральную роль в развитии злокачественного состояния богатых стромой карцином, таких как рак молочной железы и аденокарцинома протоков поджелудочной железы (PDAC). TGF-β сверхэкспрессируется в опухолевой ткани и его избыточная экспрессия коррелирует с плохим прогнозом. Отметим, что на ранних стадиях он действует как супрессор опухолей, ингибируя клеточный цикл и способствуя апоптозу, и только на поздних стадиях он функционирует как промотор, усиливающий нестабильность генома, уклонение от иммунитета, неоангиогенез и метастазирование. Это явление было названо «парадоксом TGF-β» и тесно связана с началом программ EMT во время прогрессирования опухоли. В нормальных условиях отделение эпителиальных и эндотелиальных клеток от ЕСМ приводит к аноикису (апоптозу зависимых от якоря клеток), а чувствительность к аноикису поддерживается белками клеточной полярности и контролируется кооперативным способом с помощью TGF-β, путей Wnt и Hippo. EMT индуцирует устойчивость опухолевых клеток к аноикису. Активация RHO-GTPases и особенно RAC1 является ключевым шагом в механизме EMT и вероятным фактором, способствующим тубулоинтерстициальному фиброзу и MET. Так, специфичная для поджелудочной железы активация Ki-RAS ведет к ацинарно-протоковой метаплазии (ADM) и образованию предшественников PanIN. Механическая жесткость / жесткость матрикса (опухолевого) микроокружения играет решающую роль в продвижении EMT, контролируя субклеточную локализацию и передачу сигналов вниз по течению путей RAC1 и RAC1b. Репрессия генов, кодирующих эпителиальные белки клеточных контактов, сопровождается активацией генов, продукты которых способствуют мезенхимальной адгезии. В частности, снижение экспрессии Е-кадгерина уравновешивается повышением экспрессии мезенхимального нейронального кадгерина (N-кадгерина), что ведет к "переключению кадгерина". Изменения в экспрессии генов, кодирующих цитоскелет и белковые комплексы полярности, также способствуют прохождению ЭМП. Фактор Foxa2, являющийся антагонистом фактора Snail (SNAI1) в регуляции экспрессии гена эпителиального маркера E-кадгерина, отвечает за ингибирование ЭМП, поэтому экспрессия его гена в метастазирующей опухоли также подавляется, при этом в дифференцированных раковых клетках экспрессия Foxa2 присутствует. SOX9 в отличие от Pdx1 и FoxA2, очевидно, способствует ЭМП. Последний раз редактировалось albert52; 26.05.2020 в 22:12.. |
|
|
|
|
|
#5 |
|
Местный
Регистрация: 18.04.2018
Адрес: Сибирь.
Сообщений: 267
Спасибо: 73
Спасибо 30 в 28 постах
Репутация: 10
|
А теперь вам ответ - рак вызывается споровыми. именно они меняют работу клетки и перерождают ее. И вся ваша теория также вписывается в это утверждение. А лечится рак очень просто - за 20 дней.
|
|
|
|
|
|
#6 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
Холангиоцеллюлярный рак является болезнью пожилых людей, наибольшее число заболевших приходится на возраст 50 — 70 лет, а пик заболеваемости приходится на восьмую декаду жизни. Заболевание несколько чаще встречается у мужчин, чем у женщин, что, возможно, связано с более частой встречаемостью у них первичного склерозирующего холангита, который является одним из факторов риска при развитии холангиокарцином.
В последние 30 лет наблюдается значительный рост частоты возникновения холангиоцеллюлярного рака у пациентов старше 45 лет, что прежде всего, связано с улучшением качества диагностики и ростом числа факторов риска. Холангиокарцинома, наряду с раком поджелудочной железы, раком желчного пузыря и раком ампулы Фатерова соска, относится к опухолям билиарной зоны. По своей гистологической структуре холангиоцеллюлярный рак в 90—95% случаев относится к аденокарциномам с различной степенью дифференцировки (преимущественно — высокодифференцированной). Также могут встречаться аденосквамозные, плоскоклеточные, перстневидноклеточные, муцинозные и анапластические раки. Первоначальные трансформации, приводящие к развитию рака, по всей видимости, начинаются в плюрипотентных стволовых клетках печени. Считается, что развитие холангиокарциномы происходит по тому же пути, что и развитие рака толстой кишки — начинаясь с гиперплазии и метаплазии, через дисплазию, к появлению собственно злокачественной опухоли. Считается, что наличие хронического воспаления и обструкция желчевыводящих путей способствуют развитию холангиокарциномы. В зависимости от локализации опухоли холангиоцеллюлярный рак подразделяется на: - внутрипеченочные (периферические) холангиокарциномы, происходящие из внутрипеченочных желчных протоков. Это опухоли, находящиеся в толще ткани печени и занимающие второе место по частоте после гепатоцеллюлярного рака среди первичных опухолей печени. Они составляют 10—25% всех случаев холангиокарцином, с равной частотой на каждый долевой проток. По макроскопической структуре внутрипеченочный холангиогенный рак делится на три основных вида: массивный — наиболее частый, инфильтрирующий - перипротоков, и внутрипротоковый — с папиллярным ростом или с формированием опухолевого тромба. - внепеченочные холангиокарциномы, исходящие из внепеченочных желчных путей, которые, в свою очередь подразделяются на проксимальные и дистальные холангио -карциномы. Первые составляют до 50% всех холангиокарцином. Первые симптомы, с которыми сталкивается врач гастроэнтеролог, обычно связаны с непроходимостью желчных протоков. Больной обращается с жалобами на пожелтение кожных покровов, зуд. Часто наблюдается потемнение мочи и обесцвечивание каловых масс. Из-за нарушения усвоения жиров пациенты теряют вес. Снижение массы тела также может быть связано с отсутствием аппетита, тошнотой, рвотой, раковой интоксикацией. На поздних стадиях заболевания появляются боли в правом подреберье. Холангиокарцинома может осложняться холангитом (воспалением желчных протоков). У больных повышается температура, появляются симптомы лихорадки. Прогноз при ХГК очень н***агоприятный. Средний срок выживаемости после выставления диагноза составляет 24 месяца (при внутрипеченочных холангиокарциномах составляют 18-30 месяцев, при воротных 12-24 месяца). Большая часть пациентов умирает в течение первого года после верификации диагноза. В патогенезе идентифицировано два различных молекулярных подкласса с отличительным клиническим поведением. Класс «воспаления» (38% пациентов), характеризуемый активацией воспалительных сигнальных путей, сверхэкспрессией цитокинов и активацией STAT3 , и класс «пролиферации» (62% пациентов) характеризовался активацией онкогенных сигнальных путей. Так, экспрессия VEGF (эндотелиального фактора роста сосудов) увеличивается при многих раковых заболеваниях желчных путей, и его экспрессия связана с метастазированием и плохой выживаемостью. Последний раз редактировалось albert52; 16.08.2020 в 21:20.. |
|
|
|
|
|
#7 |
|
Местный
Регистрация: 12.03.2018
Сообщений: 247
Спасибо: 0
Спасибо 6 в 5 постах
Репутация: 10
|
В зависимости от размера протока внутрипеченочное билиарное дерево можно подразделить на малые и большие внутрипеченочные желчные протоки (iBD). Маленькие iBD выстланы маленькими кубовидными холангиоцитами, коммитированные предшественники которых происходят от собственно стволовых клеток печени, тогда как столбчатые и слизистые холангиоциты выстилают большие iBD. Как правило, большие iBD содержат перибилиарные железы в стенке. Внепеченочное билиарное дерево имеет общие анатомические особенности с большими iBD, а также главным и междольковыми протоками поджелудочной железы.
Гистологические варианты холангиокарциномы (CCA) отражают фенотип пораженного протока и предполагаемой клетки происхождения. Обычный внутрипеченочный CCA (iCCA) имеет два основных варианта: iCCA небольшого протокового типа возникает в малых iBD с кубовидными холангиоцитами, представляющими предполагаемую исходную клетку происхождения опухоли, а iCCA большого протокового типа включает большие iBD и происходит от столбчатых холангиоцитов и перибилиарных клеток. Примечательно, что CCA-подобные опухоли HCC ( гепатоцеллюлярные карциномы ) обнаруживают признаки экспрессии, подобные эмбриональным стволовым клеткам, дополнительно подтверждая участие бипотентных печеночных клеток-предшественников. Отсюда подавляющее большинство перихилярных CСА (pCCA) и дистальных CCA (dCCA) происходит из выстилающего протоки эпителия и перибилиарных желез. Что же касается сходства iССА и p/d CCFс раком поджелудочной железы, то у них большое сходство как предраковых состояний: PanIN в поджелудочной железе и BilIN в желчных протоках, так и вида опухолей: эти злокачественные новообразования макроскопически проявляются в виде плотных сероватых инфильтрирующих масс с узловато-склерозирующим типом роста; гистологически оба могут продуцировать муцин. Как правило, это хорошо дифференцированные канальцевые аденокарциномы, иногда с микропапиллярным компонентом, обычно проявляющиеся периневральной и лимфоваскулярной инвазией и характеризующиеся обильной фиброзной стромой. Преобладающие геномные изменения в CCA связаны с эпигенетическими процессами. Эпигенетические нарушения – гиперметилирование промоутера и дисрегуляция микроРНК. Гиперметилирование промоутера ( последовательности нуклеотидов ДНК, узнаваемой РНК-полимеразой как стартовой площадки для начала транскрипции ) выключает гены-супрессоры: CDKN2 (83% ХГК), SOCS3 (62%), RASSF1A (69%) и APC (47%). В эмбриогенезе билиарного древа ключевую роль играет сигнальный путь Notch, нарушение его регуляции присутствует в онкогенезе ССА. Активация Notch способствует переходу нормальных гепатоцитов в билиарные клетки – предшественники iCCA. Путь Notch, как известно, участвует в восстановлении желчных протоков, росте, тубулогенезе, фиброзе и поддержании ниши стволовых клеток. Сверхэкспрессия или аберрантная экспрессия рецептора Notch описана как в iCCA, так и в pCCA и dCCA . Нарушения другого сигнального пути – Hedgehog встречается в разных опухолях, включая ССА. Ингибирование Hedgehog циклопамином тормозит миграцию, пролиферацию и инвазивность клеток ССА. PDGF ( фактор роста тромбоцитов ) – антагонист циклопропамина, напротив, стимулирует онкогенез ССА. Сигнальный путь Wnt активируется в большинстве ССА, отчасти как эффект высвобождения лигандов Wnt воспалительными макрофагами, инфильтрирующими строму, но также как следствие изменений метилирования ДНК, направленных на этот путь и / или мутации генов, кодирующих ключевые компоненты канонического пути передачи сигналов WNT-β-catenin. Промотор ингибитора пути WNT-β-catenin SOX17 был гиперметилирован в опухолевой ткани CCA по сравнению со здоровой тканью, что коррелировало с худшим прогнозом после резекции опухоли. CSCs ( раковые стволовые клетки ) выражают черты EMT в CCA человека. Интересно, что CCA, возникающая у пациентов с PSC ( первичным склерозирующим холангитом ), характеризуется ранними проявлениями EMT и высокой экспрессией маркеров стволовых и / или клеток-предшественников в перибилиарных железах, подтверждая связь между EMT и стволовостью в инициации опухоли. EMT-TFs, такие как ZEB1, регулируют экспрессию маркеров CSC путем ингибирования членов семейства miR-200, хорошо известных мощных репрессоров стволовости. Последний раз редактировалось albert52; 11.10.2020 в 21:49.. |
|
|
|